There’s a solar farm just north of Winfield Village, with ranks of solar arrays that turn from pointing east to pointing straight up to pointing west. (Oddly, they’re not arranged to point south. I assume the people who built it knew what they were doing, but I’ve been puzzling over it for a couple of years.)
The directions they point (and the timing of the changes) seem odd, and I’ve been trying to characterize the whole thing.
I initially assumed that they’d be programmed to point a particular direction based on ephemeris data about where the sun will be, but that seems not to be the case.
Here’s one piece of data: At dawn they do not turn to point east. Rather, they turn to point straight up:
It is only after the sun is well up that the panels turn to face east.
Last night, perhaps an hour before sunset, they were pointed about halfway between west and straight up. Which kind of makes sense, as there were clouds to the west, so they clear sky straight up was probably as bright as the sun behind the cloudy sky.
My current working theory is that the panels turn to face whatever direction produces the most power, regardless of where the sun is in the sky.
I’ll continue to watch, and try to characterize their behavior further.
Maybe I’ll even get in touch with the University and see if they can provide a link to a description!
“The best available science indicates that the effects of climate change will continue to adversely impact the basin,” — this from the latest issue of the water-policy journal “Duh!”
“There are windmills in northern Canada. In Norway. At the Antarctic research stations. If Texas’s windmills shut down during the storm, it’s not because we don’t know how to make cold-weather windmills – it’s because allowing windmills to fail in cold weather was profitable.” — Cory Doctorow
I can kinda understand the 0.1% (with secure bunkers on high ground) talking down climate change. But what’s up with ordinary people living near a coast? How are they not demanding urgent action?
Yesterday’s eclipse prompted me to go look at the day’s power production from the University of Illinois’s solar farm.
Just eyeballing the graph, I’d estimate that eclipsing 94% of the sun reduced power production by about 94%.
The solar farm is exactly one mile north of Winfield Village. Jackie and I got a tour of the facility a couple of months ago and I got some pictures besides the one at the top, but haven’t gotten around to writing my solar farm post yet.
From the IMF blog, a great chart showing the rate at which motor vehicles took over from horses early in the 20th century. Putting current motor-vehicle and electric-car use on the same graph makes a pretty good visual case that we might be as little as 15 years from the cross-over point where half the vehicles on the road are electric.
Greater affordability of electric vehicles will likely steer us away from our current sources of energy for transportation, and toward more environmentally friendly technology. And that can happen sooner than you think.
I spent my lunch hour at an OLLI lunchtime lecture, learning about why we have coal in Illinois, and why sometimes coal formations have fossilized forests on top. The talk by Scott Elrick (of the Illinois State Geological Survey) was absolutely fascinating.
The first part of the talk looked at the history of continental drift, looking at where the land mass that eventually became North America (and the piece of it that became Illinois) was over the last few hundred million years. During the Pennsylvanian period, Illinois was roughly on the equator, which turns out to be important.
To get coal, you need to have lots of plant matter, but very little sediment. If you don’t have the plant material, you’ve got nothing to turn into coal. But even if you have the plant material, if you have any significant amount of sediment—inorganic material washed in by water and deposited on the ground—you don’t end up with coal, you just end up with shale.
There’s an area along the equator called the “convergence zone” where the weather of the northern hemisphere meets the weather of the southern hemisphere. Most of the time, this zone shifts north and south over the course of a year, meaning the tropics experience wet seasons and dry seasons. However, during the period in question there was extensive glaciation, meaning lower sea levels, which turns out to mean much less shifting of the convergence zone. Which means that, for a geologically long period of time, it rained a lot, all year.
That’s the circumstance that lets you get coal. To be more specific, that’s the circumstance that gets you peat.
Lots of plant matter, but very little sediment (because those plants had lots of roots to stabilize the ground, and they never had to die back, because there were no seasons). The plants grow, the plants die, the dead plants end up on the wet ground, they get covered with water, which limits the oxygen that gets to the plant, meaning that more plants can grow on top of them before they decay. Result: peat.
To get coal takes one more thing: Your peat has to get buried. If it gets buried well enough that air never gets in there, and if it ends up buried deep enough that there’s some serious pressure and heat, and stays there for long enough, all the volatile (i.e. non-carbon) elements in the peat get cooked off. Result: coal.
So, in the Pennsylvanian, we had this long period of nothing but rainy season, allowing layers of peat to build up. But eventually the glacial period ended.
It turns out that glacial periods can end really fast. They start slow, with ice building up gradually over decades and centuries. But they can end very quickly, with centuries of ice melting in a matter of years.
The ice melts, the sea levels rise, and the convergence zone starts showing seasonality, moving north and south over the course of the year. Forests full of plants that expected rain every day suddenly had to adapt to tolerate dry seasons.
This produced a lot of changes, of course. The plant species show dramatic shifts. Crucially, they die back during the dry season—meaning that you start to see a lot more sediment.
In the fossil record, you see this as a thick vein of coal with a thick vein of shale on top.
And right here in east-central Illinois, something very interesting happened. Along a fault line, a series of earthquakes caused the ground on one side to sink. In that sunken area the sediment built up even more quickly—quickly enough to cover whole plants. Fallen trees were covered up faster than they could rot away. Branches with leaves were covered before the leaves could fall off.
The result is a thick vein of coal, with a fossil forest on top of it.
Is that cool or what?
This particular forest, near Danville, Illinois, was the first one discovered that was big enough that paleobotanists could study the forest at the level of the forest community. As opposed to just seeing what plants grew near a few other plants, they could see how the plants that grew near one another changed as you moved from one part of the forest to another.
Painting by J. Vriesen and K. Johnson via nature.com
Scott Elrick showed us all kinds of cool stuff. One thing was this artist’s rendition of the forest, showing large, tall trees growing very close to one another, something that would be rare in forest today. Turns out that these trees—Lycopods—had photosynthetic bark, and didn’t grow leaves until they reached their full height. So they didn’t shade out their neighbors the way modern trees do. They also had very long roots that extended many meters from the trunk, but the root systems were quite shallow, going just a few meters down.
He also had pictures taken from within the coal mine, showing the fossils of these trees—trunk and roots—growing right up out of the coal seam: Trees that had been alive when the weather changed and that ended up with a meter or two of sediment covering the bottom of the trunk fast enough that the tree never fell down. It just fossilized in place.
It was a great talk at which I learned all sorts of things about geology and paleobotany. I’m going to have to follow this guy’s work in the future.
One of the things I try to do in my fiction is show any collapse scenario as a process.
Your standard “if this goes on” story is all about looking ahead to see the result of current trends. But trying to see the endpoint of climate change, peak oil, habitat destruction, environmental degradation, or any similar process is going to be misleading. There is no endpoint—things keep going on.
I think the destruction wrought by Sandy is a good example. I’ve read a lot of stories set in a world where climate change has inundated the coasts. What aren’t nearly as common are stories set in the world we’re approaching: A world where the coasts are inundated only 1% of the time (or, a bit later, 2% of the time). A world where we see a 100-year storm every 8 or 10 years. A world where all our infrastructure spending is going for repairs, and yet we keep falling behind.
I say this is a world we’re approaching, but we may have already reached it. How many 100-year storms can you have in a decade before you have to admit that it’s not just a statistical anomaly, but rather is the new reality?
I’m one of those annoying people who always responds to any suggestion that we “do something” about gun violence or terrorism by pointing out that we allow 40,000 motor vehicle deaths per year, and that maybe we should do something about that problem first.
I don’t do this for tactical reasons. (I recognize that, as a tactic, this argument is a dead loser.)
I do it because I really, really care about motor vehicle deaths—given my lifestyle, I figure they’re the most likely cause of my own premature death.
I walk a lot, and a lot of my walking is along roadways. I also bicycle a lot, and a lot of my bicycling is along roadways. (I walk and bicycle for transportation, not merely for fitness. If you’re walking or bicycling to get somewhere, you’re going to end up going on the roads that lead from where you are to where you need to go.)
The number of people who die of gunshot wounds in the US is high, but very few of those deaths are random. A majority are suicides. The overwhelming majority of the remainder are criminal-on-criminal homicides.
It’s easy to reduce your risk of being shot to a level so low as to be statistically insignificant, and the steps you need to take are all perfectly sensible things that everyone should do anyway:
Seek treatment if you’re suffering from depression
Don’t commit crimes
Don’t do business with violent criminals
Don’t hang out with violent criminals
Do those things and your risk of being shot drops to the level of other risks that you largely ignore, like the risk of being struck by lightning or the risk of being gored by a bull.
There is no similar set of things you can do to similarly reduce your risk of being killed or injured by a motor vehicle. (If anyone can provide one, I’d be delighted to hear it.)
Besides the fact that I (apparently perversely) view motor vehicle deaths as the larger problem, I also don’t see any good, simple way to reduce firearm deaths. (Except, you know, the way I just mentioned which is highly effective at reducing them on an individual basis.)
I think a lot of people would be glad to see guns disappear (as has largely happened in Australia) or at least be very strictly limited (like in the UK or in Canada)—but that’s not going to happen. In a democracy such major changes require not just a majority vote but a broad consensus in society.
At a minimum, a lot of people suggest, if we’re going to allow people to own firearms, there should at least be some “reasonable regulation,” like there is with cars. I object to such schemes, on the grounds that there’s no way to enforce them without using police-state tactics.
It is not, I wish to emphasize, just about firearms that I feel this way. I object to any scheme where citizens are required to keep their papers in order, or are required to show their papers when demanded by some official. The immigration debate raises the same issues, and I feel the same way in that case as well.
Such objections may seem like a weird fantasy of an America that never was, but that’s not the case. Until quite recently, it was entirely possible to get along in the United States without any sort of government-issued ID. Even now it’s possible, although it requires giving up things that are tough to get along without. (It’s tough to open a bank account or to get a job without ID.) But that’s a problem to be fixed, not an excuse to go on adding to the list of things that require papers.
I don’t just complain about this stuff. I’m active locally in the community of people advocating for better bicycling and pedestrian infrastructure. I work to improve the laws to make things safer for bicyclists, and I work to educate both bicyclists and drivers on safe riding and driving.
I would encourage you to do so as well. Even if you’re not a bicyclist you know some, and everyone’s a pedestrian.
If you do—if you’re one of the many people who’s making significant and ongoing contributions to bicycling and pedestrian safety—I promise to listen thoughtfully and give serious consideration to anything you’ve got to say about reducing gun violence.